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signals

O Unmodelled sub-daily harmonic
signals propagate into GPS
height time series [Penna et al.,
2007, JGR]

Tested 8 sites >

Admittances of up to ~120%
into heights in PPP solutions

Unmodelled signals in N are
most ‘efficient’ (~120%),
followed by E (~40%) and U
(~5%)
o Will bias GPS estimates of low
frequency geophysical signals

Propagation of unmodelled
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Example

KARR: M2
amp h 15 mm
amp E 2 mm
amp N 7 mm
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SUb-dally S|gnals Atmospheric Loading

Displacements
[Petrov and Boy,
2003]
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O What signals are expected in GPS
coordinate time series at sub-daily
frequencies?

Residual solid earth tides (<~0.5mm)
Residual ocean tide loading
displacements (typically <~1mm) / o I

-90°
457 90° 135° 180°

Atmospheric tidal loading 0005 10 15
displacements (S1 and S2 <~1.5MmM) N /e

GPS systematic errors

Even sub-mm signals matter when
admittance could be >100%

O Varying degrees of certainty in our
knowledge of these signals
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What sub-daily signals are
really present in the data?

O Produce sub-daily coordinate
time series for ~90 IGb00
sites using kinematic PPP

Site coordinates each 5
minutes over 2000-2006

GIPSY software with JPL
orbits and clocks

MOdeI“ng OTL and SE tldeS 180° 270" o  90°

Other than 5min coordinate IGb00 sites
estimate, identical to standard
24hr PPP




o | Typical Sub-daily Spectra

GOLD High Frequency Power Spectra, Soln: MK-30-min, Orbit: JPL, Lat: 35.4° Long: -116.9°
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o | Typical Sub-daily Spectra

MAW1 High Frequency Power Spectra, Soln: MK-30-min, Orbit: JPL, Lat: -67.6 Long: 62.9°
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Time-varying behaviour

Signal Period (hrs) BAHR: Simulated time-constant
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Predicted frequencies of

® . . . .
resulting signal in 24h solutions
Theory of o S1-> Annual |
Stewart et al.,
J. Geod., 2005 © K1 -> Annual
°© O1->14.19 d & 13.66 d|(beat annually)
Highest o S2 -> Semi-annual

O Time-varying sub-daily signals should
give time-varying long period signals —
broad spectral peaks



Propagation into 24hr
solutions

O Differenced solutions
Solution 1: 5 minute coordinate solutions

Solution 2: produced as for 5 minute
solutions but coordinate estimates once per
24hr and then interpolated to 5 minutes

Difference of solutions: gives propagation
effect of unmodelled signals

Common low frequency geophysical signal is
eliminated in the difference

Following slides only showing effect of E,N,U on
U component
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Example spectra of differences

GOLD

Power Spectrum

Spectrum of Raw Data |
Spectrum of Residual Data
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Example spectra of differences
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Propagated Annual signal

due to sub-daily signals
Annqal U
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Median Amplitude:
0.75mm




Propagated Semi-Annual signal

due to sub-daily signals
Semi-Annual U
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Potential Origin of Signals

O Candidates
Solid Earth tides
IERS2003 model errors <1mm level at K1
Loading signals

Residual ocean tide loading displacement signal likely <1mm in
most regions

Atmospheric tidal loading displacement signals <~1mm and
<<1mm in horizontal components

Tropospheric mapping function errors
Does not explain K1 and K2
Multipath

Does not explain S1 and S2 and not well-defined mechanism
for K1 and K2 (multipath repeats at K1, but is not a K1
harmonic)

Satellite orbits

Provides a potential mechanism for K1, K2 and S1, S2 through
solar radiation mismodelling



JPL Orbits
and Clocks

Defined
peaks

Comparison of orbits/clocks at
sub-daily frequencies: BAHR

BAHR High Frequency Power Spectra, Soln: MK-30-min, Orbit: JPL, Lat: 26.2" Long: 50.6
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IGS Orbits
and Clocks

Broad
peaks

Comparison of orbits/clocks at
sub-daily frequencies: BAHR

BAHR High Frequency Power Spectra, Soln: MK-30-min, Orbit: IGS, Lat: 26.2° Long: 50.6"
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Conclusions

(@)

Sub-daily harmonic signals are evident in common
GPS time series with amplitudes up to >10mm at S1,
S2, K1 and K2 (and other frequencies)

Sub-daily spectra are time-dependent

These propagate into long-period signals at ~annual,
~semi-annual and other periods

These may bias geophysical loading estimates at
individual sites at the level of ~0.6-0.8mm on average
(at 1cpy and 2cpy)

Little evidence of spatial coherence of propagated
annual/semi-annual signals

low degree spherical harmonic estimates may not be
biased, although made noisier

Likely origin is in satellite orbits/clocks with smaller
contributions from geophysical and multipath signals

Different sub-daily spectra using different products
suggests different propagated signals



