Enhancement of Australia's National Geospatial Reference System

Gary Johnston Geoscience Australia

Geoscience Australia

Outline

 What is the National Geospatial Reference System

Why Improve it

How do we plan on proceeding

Geoscience Australia

National Geospatial Reference System

Definition

- Coordinate system to which all positions and spatial data are referred
- Consists of Three parts
 - Linkage to the International Terrestrial Reference Frame
 - Realization through the Geodetic Infrastructure
 - Systems and services used to make it accessible
- Currently GDA94 and AHD71 are Australia's horizontal and vertical datums respectively

Vision

- Improve the accuracy of the National Geospatial Reference Frame by an order of magnitude
- Develop the infrastructure necessary to promote research and industry in the national interest
- Deliver a high accuracy datum to all Australians in order to keep Australia competitive

Geoscience Australia

Accuracy Requirements

Category	Accuracy Requirement	Application Examples
1	1mm	Reference Frame Development
		National Datum (GDA, AHD, Gravity Field)
		Geodetic Science (Neo-tectonics, Sea Level Rise, Isostasy, etc.)
2	10mm at 1σ	Mapping / SDI
		Precision Agriculture
		Mining / Construction, Engineering
3	100mm at 5σ	Liability Critical Services
		Safety of Life Applications

Geoscience Australia

- 19 earthquakes for the last 30 days (magnitude > 2.0)
- red star last 7 days (most recent: 13 April)
- orange star 7 to 14 days
- green star 14 to 30 days (oldest: 25 March)
- grey triangle historical earthquake greater than magnitude 6 EGU2007 Meeting April 2007

Geology and Earth Quake locations

EGU2007 Meeting April 2007

Infrastructure Cost

EU •Population •Area •Density

494,070,000 4,324,782 km² 114 people / km²

Australia•Population20,2•Area7,6•Density2.6 P

20,264,082 7,617,930 km² 2.6 People / km²

Therefore equivalent infrastructure costs are 44 times larger per person in Australia

EGU2007 Meeting April 2007

NCRIS Infrastructure Bid

Reference frame enhancement
VLBI, SLR, Gravimetry, GPS

- Improve the Realisation in Australia
 - GPS network covering majority of applications

Proposed VLBI network

EGU2007 Meeting April 2007

Simulations:

Geodetic results - 6 core stations +

(1) + "slow" Hobart

(2) + Hartrao & "fast" Hobart

- (3) + Hartrao & "fast" Hobart & Yarragadee
- (4) + Hartrao & "fast" Hobart & Yarragadee & Katherine
- (5) + Hartrao & "fast" Hobart & Yarragadee & Katherine & New Zealand

EGU2007 Meeting April 2007

Simulations: Geodetic results - 6 core stations +

Hobart height component accuracy

- (1) + "slow" Hobart
- (2) + Hartrao & "fast" Hobart
- (3) + Hartrao & "fast" Hobart & Yarragadee
- (4) + Hartrao & "fast" Hobart & Yarragadee & Katherine
- (5) + Hartrao & "fast" Hobart & Yarragadee & Katherine & New Zealand

EGU2007 Meeting April 2007

Stromlo Power Upgrade

- Increased capability to range to the higher satellites (and daylight ranging):
 - GPS (2)
 - · GLONASS (all)
 - Etalon
 - Galileo (27)
 - OPTUS– B (Geostationary)
- Clock Calibration for GNSS satellites
- Improved UT1 from SLR

EGU2007 Meeting April 2007

total passes from April 1, 2006 through March 31, 2007

HEO passes from April 1, 2006 through March 31, 2007

Gravity

- Acquire a FG5 for routine use around Australian Observatories
- Acquire capability to measure tidal site displacements for input into improved models
- Continued support for the Super conducting Gravity meter at Stromlo

Geoscience Australia

Gravity Residuals (FG5 – Schwiderski OT model)

EGU2007 Meeting April 2007

Proposed GPS network

- Cross continental GNSS transects for measuring intraplate deformation
- Station spacing of 200km, resulting in users not being more then 100km from nearest CORS station
- Circum-continental coverage for measuring plate dynamics, and sea level change
- Major road and rail routes covered
- Major agricultural areas covered
- Major population zones covered
- Major areas of environmental research covered
- Some of the existing mining industry areas covered, although it is envisaged that this number would be increase by mine operators adding their sites collaboratively to the network.

Geoscience Australia

Major tourism areas covered

Conclusion

- Australia is making a significant investment in infrastructure to aid the refinement of the ITRF
- Funding is achievable by making the linkage to national benefit including all of the down stream applications
- Next step is using the data : We look forward to working with you !!